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Abstract

We introduce higher order polynomial deformations of A; Lie algebra. We
construct their unitary representations and the corresponding single-variable
differential operator realizations. We then use the results to obtain exact (Bethe
ansatz) solutions to a class of two-mode boson systems, including the Bose—
Einstein condensate (BEC) models as special cases. Up to an overall factor,
the eigenfunctions of the two-mode boson systems are given by polynomials
whose roots are solutions of the associated Bethe ansatz equations. The
corresponding eigenvalues are expressed in terms of these roots. We also
establish the spectral equivalence between the BEC models and certain quasi-
exactly solvable Schordinger potentials.

PACS numbers: 02.20.—a, 02.20.Sv, 03.65.Fd, 42.65.Ky

1. Introduction

Polynomial algebras are nonlinear deformations of Lie algebras and have recently found
widespread applications in theoretical physics whereby they appear in diverse topics such as
quantum mechanics, Yang—Mills-type gauge theories, quantum nonlinear optics, integrable
systems and (quasi-)exactly solvable models, to name a few (see e.g. [1-10]).

One of the reasons for their increasing prevalence stems from the realization that traditional
linear Lie algebras describe only a very restrictive subset of linear symmetries and that
many physical systems do in fact possess nonlinear symmetries, such as those in which the
commutations of the symmetry algebra generators return polynomial terms.

Due to their importance, a number of studies have been undertaken to investigate the
mathematical properties of these algebras [11]. In particular, differential realizations of
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certain quadratic and cubic algebras have been explored in [12, 13] and also in [14, 15] in
connection with the theory of quasi-exact integrability [16—18].

In this paper, we introduce a novel class of higher order polynomial deformations of the
classical A; Lie algebra and construct their unitary representations in terms of boson operators
and single-variable differential operators. We will then use the differential realizations of these
algebras and the functional Bethe ansatz method (see e.g. [19, 20]) to obtain one of the main
results of this paper, that is the exact eigenfunctions and energy eigenvalues of the following
class of Hamiltonians:

2 2
H = Zw,-N,- + Zwi_,-NiNj +g(a1“a£ +afa;r), r,s €N, (1.1)
i i

where and throughout a; (aiT ) are bosonic annihilation (creation) operators with frequencies
w, N; = aTai are number operators, w; and g are real coupling constants. Without

loss of generality, in the following we will identify w;, with w,;. Hamiltonians (1.1)
appear in the description of various physical systems of interest such as nonlinear optics
[8, 9] and Bose-Einstein condensates (BECs) [21-24]. For instance, the non-diagonal terms
in (1.1) describe processes of multi-photon scattering and higher order harmonic generation
in quantum nonlinear optics. Let us point out that (1.1) is a two-mode version of the more
general multi-mode Hamiltonian considered in [25] in which the quasi-exact solvability of
the multi-mode system was established by a different procedure and without giving exact
solutions (see also [26] for the case of third-order harmonic generation)®. Hamiltonians for
the special cases of s = r = 1 and s = 2, r = 1 have also been studied using the algebraic
Bethe ansatz (ABA) method [27].

This paper is organized as follows. In section 2, we propose a class of generalized
polynomial su(1, 1) algebras and derive their boson realizations. In section 3, we use these
deformed su (1, 1) algebras as base elements to generate higher order polynomial algebras via a
Jordan—Schwinger-like construction method. We then identify these algebras as the dynamical
algebra of the Hamiltonian (1.1) in section 4 and solve for the eigenvalue problem in general via
the functional Bethe ansatz method. In section 5, we present explicit results for the Hamiltonian
(1.1) when r, s < 2 and r = s = 3. In section 6, we establish the spectral correspondence of
these specific models with quasi-exactly solvable (QES) Schrodinger potentials. Finally, we
summarize our results in section 7 and discuss further avenues of investigation.

2. Polynomial deformations of su(1,1) algebra

Let k be a positive integer, k = 1,2,.... We start off by proposing a class of polynomial
algebras of degree k — 1 defined by the commutation relations

[Qo, Q+] = £04,

Qo, O O+ @1

[0+, 0-1=¢P(Q0) —¢p®(Qo — 1),

where
k

. ko,
1 i—k 1
®) _ L O _r 22
¢ (Qo) ,L! (Qo ; k2> ,L! ( p k2) (2.2)
is a kth-order polynomial in Q. The algebra admits the Casimir operator of the following
form:

C=0-0.+¢%(Q0) = 0:0_+¢%(Qo - 1). (2.3)

3 'We became aware of these three references after submitting our work. We thank one referee for pointing them out.
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For k = 1 and k = 2, (2.1) reduces to the oscillator and su(1, 1) algebras, respectively. Thus,
the algebra (2.1) can be viewed as polynomial extensions of the linear su(1, 1) and oscillator
algebras.

Similar to the su(l,1) algebra case, unitary representations of (2.1) are infinite
dimensional. In this section, we shall concentrate on the following one-mode boson realization
of the algebra:

Q+ = (aT)kv Q—

1 \
(VR (vﬁk(% Q°=_<aa+_>‘ @9

In this realization, the Casimir (2.3) takes the particular value,

k
k1
czn(lk _ﬁ)' 2.5)
i=1

We now construct the unitary representations corresponding to the realization (2.4) in the
Fock space Hy,. There are k lowest weight states,

10), @H]0), ..., @) 10). (2.6)

Writing these lowest weight states as |g, 0) using the Bargmann index g, we have

Qolg, 0) = qlg, 0), 0-lq,0) =0. (2.7)
It follows from (2.3) and (2.5) that []}_, (g + 5% — &) =0, from which we get

1 k+1 2k+1 (k—Dk+1
q = 2 e e 2 . (2.8)
This means that the boson realization (2.4) corresponds to the infinite-dimensional unitary

representation with partlcular g values (2.8). In other words, the Hb decomposes into the
k= l)k+l (k=Dk+1

direct sum H;, = 'H ®---®H, © of kirreducible components Hb s M, «

Notingkg—+ =0, 1, ..., k—1forall the allowed ¢ values given in (2.8), we can write the
lowest weight states (2.6) as |q, 0) = (ah)ka- i |0). The general Fock states |g, n) ~ Q’lg, 0)
in the irreducible representation space H; are then given by

gk
lg,n) = |0). (2.9)

[k(n+q—2)]!

It is easy to show that Q¢, QO+ and C act on these states as follows:

Q0|6]’”> = (6] +n)|q,n),
k

1
ik—1)\?

i=1
( (i—1)k+1>i
n+q————|, lg,n—1), (2.10)

0-lg.my=]]

i=1

aqn=ﬂ(¢ )qm

i=I

k
k2

1 k+1 (k— Dk+1

n=20,1,..., qu, TR 2
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3. Polynomial algebras via a Jordan-Schwinger-type construction

The unitary representations of the polynomial algebras discussed in the preceding section are
all infinite dimensional. In this section, we shall employ a Jordan—Schwinger-like construction
[12, 13], to derive polynomial algebras that have finite-dimensional unitary representations.
Towards this end, we consider two mutually commuting polynomial algebras introduced in
the preceding section, { Q% D oM (()1)} of degree (k; — 1) and { Q% 2 0®, Q(()z)} of degree
(ko — 1), where ky, ko, = 1, 2, ..., and introduce new generators,

0, = Q(I)Q(z) Q. = Q(2)Q(1) Qy = %(Q(()l) _ Q(()Z)). (3.1)

We can easily show that Qg + form a polynomial algebra of degree (k; + k, — 1) which close
under the following commutation relations:

[Qo, Q1] = £Qy4,

(3.2)
[Q., Q1= "™)(Qy, £) — “*)(Qy — 1, L),
where for our purpose we have used (2.5) for the Casimir of {Q(’) Ji=1,2).
=10y +07) (3.3)
is the central element of the algebra,
[£, Qi 0]l =0, 3.4
and
ul i1\ 2 1
e (0, £) = -] (L +Qo+ - p) [1 ( —(Q+ 1)+ kz) (3.5)
i=1 1 1 ky

Jj=1
is a (k; + ky)th-order polynomial in Qg and the central elements £. The Casimir operator of
(3.2) is given by

C=0 Q.+¢"™(Qy, L) = Q,Q_+¢“*)(Qy — 1, L). (3.6)

For ky + k, = 2, 1i.e. kj = ky = 1, the polynomial algebra (3.2) reduces to the linear su(2)
algebra. So the algebras defined by (3.2) are polynomial deformations of su(2).

In terms of two sets of mutually commuting boson operators acting on the tensor product
of the Fock spaces, we have the realization (i = 1, 2 below)

1 1
(Vki)k (ki )"
This realization gives rise to finite-dimensional representations of the polynomial algebra
(3.2). To show this, let |gi,n1), |g2, n2) be the one-mode Fock states of the algebras

ki
0 = @ V=

(a2)", oy =— (N+;> (3.7)

{Q(l) 1. {Q(z) }. respectively, where ny, n, = 0,1,...,and ¢; = k2’ k‘kil, o % and
Q@ = klz, k;;l, R (kzli# The representations of {Qg 4} corresponding to the realization

(3.7) are then given by the two-mode Fock states |q;, n1)|g2, n2). Since L is a central element
of the algebra, it must be a constant, denoted as / below, on any irreducible representations.
This imposes a constraint on the values of n; and n,,

Llgr, n1)lg2, n2) = (g1 +n1 + g2 +n2)lgr, n1)lgz, n2) = g, n1)lga, na). (3.8)
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That is, ny + n, = 21 — (q1 + q2). Thus, obviously 2/ — g; — ¢, take only positive integer
values, i.e.

20—q1—q2=0,1,.... 3.9
It follows that the Fock states corresponding to the realization (3.7) are

lg1, g2, 1, 1) = |q1,n)|q2, 2l — q —qz —n>

ki (n+q i ke @l—q —n—-=1)
_ ( T) 1 1— ( 2) 2 1 P |O)
1 1 ’
NG E)).\/(kz(Zl — a1 — 5 —n))!
n=0,1,...,2l —q; — qo, (3.10)
noting that 2 — g; — ¢, is always less than or equal to 2/ — g; — kiz This gives us the
2
(2l — g1 — q» + 1)-dimensional irreducible representation of (3.2),
Qlg1, g2, n, 1) = (g =L+ n)lq1, g2, n, 1),
k2 . 1
k(i —1)+1\?
Qg o, Iy =[] (21 e
i=1 2
— 1\
X 1_[<”+QI+ 2 ) 91, g2, n + 1, 1), (3.11)
kz . 1
ikpy —1\?2
Q—|QL7‘]27”71)=H<21_511_”+ k2 )
i=1
(j— Dk +1
X H<H+Q1 e |611,612,n—1,l>-
By using the Fock—Bargmann correspondence,
i d z
a; — z;, a; — — |n;) — —, (3.12)
le }’li!

we can make the following association:

k(g —15) keQ@l—qi—n—15)
1 2
21 2

\/(kl(n +q— ki]z))!\/(kz(zz —a -k n)!

Now since [, g1, q2, k1, ko are constants, we can map the states |q;, g2, 1, ) above to the
monomials in z = z}' / 25,

g1, g2, n, 1) —> (3.13)

n

\/(kl(n +a1 - b))! \/(kz(ZI & —n))!

n=0,1,...,2l —q — q». (3.14)

q’ql,qz,n,l(z) =

’
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The corresponding single-variable differential operator realization of (3.2) takes the following
form:

d
Q=z—+q — I,

dz
(R G—Dkat1 d
Q+—z(m)k1]1j[l<2l—q1—T—z£>, (3.15)
o — 1 WEN (Zi - (j—l)k1+1)
T WRe e K '

These differential operators form the same (2/ — g; — ¢, + 1)-dimensional representations

in the space of polynomials as those realized by (3.7) in the corresponding Fock space. We

remark that because ]_[1;1:1 (ql - ﬂ%) = 0 for all the allowed ¢, values, there is no z~!
1

term in Q_ above, and thus the differential operator expressions (3.15) are non-singular.

4. Exact solution of the two-mode boson systems

We now use the differential operator realization (3.15) to exactly solve the two-mode boson
Hamiltonian (1.1).

By means of the Jordan—Schwinger-type construction (3.1) and the realization (3.7),
identifying k; with s and k, with r, we may express the Hamiltonian (1.1) in terms of the
generators of the polynomial algebra (3.2),

2 2
H =Y "wiNj+ ) wiN;N; +g/s°r(Qy + Q.), (4.1)
i i,j

with the number operators having the following expressions in Qp and L:
1 1
N1=S(Qo+£)—;, N2=V(£—Qo)—;- (4.2)

Keep in mind that {Q+ o} in (4.1) as realized by (3.7) (and (3.1)) form the ((2/ — g — ¢2) +1)-
dimensional representation of the polynomial algebra (3.2). This representation is also realized
by the differential operators (3.15) acting on the ((2I — q; — g2) + 1)-dimensional space of
polynomials with basis {1, z, z%, ..., z? =979}, We can thus equivalently represent (4.1) (i.e.
(1.1)) as the single-variable differential operator of order max{s, r, 2},

2 2 r
G-Dr+1 d
H = E w; N; + E wijN,-Nj+gzl_[r(21—q1—r—2—ZE
i ij Jj=1 '

i d (G—Ds+1
1
+ —+q - — 4.3
8z !:|ls (z o ) (4.3)
with
d 1 d 1
Ni=s|z—+q1 | — -, Ny=r(2l—q1—z—)——. 4.4)
dz s dz r
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We will now solve for the Hamiltonian equation

Hy(z) = EY(2) 4.5)

by using the functional Bethe ansatz method, where 1 (z) is the eigenfunction and E is the
corresponding eigenvalue. It is easy to verify

d i —r+1
H" =7"*g Hr <21 —q1 — % — m) + lower order terms, m € Z,. (4.6)
r
j=1

This means that the differential operator (4.3) is not exactly solvable. However, it is quasi
exactly solvable since it has an invariant polynomial subspace of degree (2] — q; — ¢») + 1:

HY CV, Y =span{l, z, ...,z ""%}, dimV =21 —q; — ¢ + 1. 4.7

This is easily seen from the fact that when m = 21 — g1 — ¢», the first term on the rhs of (4.6)
becomes 22~ e [T'_ r(q2 — U=11) which vanishes identically for all the allowed ¢,
values. We remark that the quasi-exact solvability of the system is connected with its quantum
integrability, i.e. with the fact that there exists a quantum operator coinciding with a linear
combination of the operators N; and N, which commutes with the Hamiltonian (1.1).

As (4.3) is a quasi exactly solvable differential operator preserving V, up to an overall
factor, its eigenfunctions have the form

M
Y@ =[]c—-a), (4.8)
i=1

where M =2l — g, — q2(=0,1,...),and {o; | = 1,2, ..., M} are roots of the polynomial
which will be specified later by the associated Bethe ansatz equations (4.14) below. We can
rewrite the Hamiltonian (4.3) as

max{r,s,2}

d i
H='Y P <d—z> + B (4.9)

i=1

where

. (i—Dr+1 1\2
o=l (30 =) )
i=1

1\2 1 1
+ Wy <l’(21 —q1) — —) + 2wy (Wl - —) <r(21 —q1) — —>
r s r
+ wy (sql — %) + wy (r(Zl —q1) — %) (4.10)

and P;(z) are the coefficients in front of d’ /dz’ in the expansion of (4.3) (see the appendix),

s s s r r r
P@y=gs'27' Y | Y [] Ai|Lei+ve=r 2> 1 D0 [1 Bi| L

k=i \li<--<lp j#Eh##lk k=t \li<--<lg j#h#F#lk
+F38; 2% + Dé; 1z (4.11)
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In the above expression,

(i—Ds+1
Ai =41 — —27
N
(i —r+1
Bi=—<21—Q1—r—2 )
Lix=1,
k—1

L= Y mimy—1) (i — (k—i)+1), i<k, (4.12)

ny<--<Ng—i

F = w22r2 + w”s2 — 2waST,

1 1
D= st (1 _2(21 T 7)) Fons® (“2(q' - 7))
r S

1 1
+2wiars (2(1 —q1)+ -5 1) + WS — war.
S r

Dividing the Hamiltonian equation Hy¥ = E{ by y gives us
max{r,s,2} M

Hy _ 1
E=—-= P;(2)i! Py(z). (4.13
7 ; ()i ,,<,§.<n- Coa) ) 0(2). (4.13)

The lhs of (4.13) is a constant, while the rhs is a meromorphic function in z with at most simple
poles. For them to be equal, we need to eliminate all singularities on the rhs of (4.13). We
may achieve this by demanding that the residues of the simple poles, z = «;,i = 1,2, ..., M,
should all vanish. This leads to the Bethe ansatz equations for the roots {«;}:

max{r,s,2}

Pi(ay)i!
Z Z (a[’)l +Pl(a]7):0’ p:l,z,...,M-

i=2 h<b<-<li_1#p (O‘P o 0‘11) e (O‘P - O‘IH)

(4.14)
The wavefunction v (z) (4.8) becomes the eigenfunction of H (4.3) in the space V provided
that the roots {¢;} of the polynomial ¥ (z) (4.8) are the solutions of (4.14).

Some remarks are in order. It is easily seen (from (4.8) and (4.15) below) that Hvy /vy is
regular at z = £oo. When (4.14) is satisfied, the rhs of (4.13) is analytic everywhere in the
whole complex plane and thus must be a constant by the Liouville theorem. Therefore, the
Bethe ansatz equation (4.14) is not only necessary but also a sufficient condition for the rhs of
(4.13) to be independent of z.

To obtain the corresponding eigenvalue E, we consider the leading order expansion of

Y (2),
M
VU(z) =M — M1 Z“i +

It is easy to show that Q4 ¢y (z) have the expansions

r r -1 1 M
o= | oo =) | R

j=1

_ ua W ( _ _(j—l)s+1>
Q Y=z (ﬁ)’,l:[l 20— g " +eoe, (4.15)

Qv ="~ g2+
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Substituting these expressions into the Hamiltonian equation (4.5) and equating the z terms,
we arrive at

1\* 1\° 1 1
E =wy (S(ZI —q) — —> + wa) (”% - —) + 2wy (S(zl —q2) — —) <”612 - —)
S r S r
1 1
+w (S(Zl —q2) — —) +wp (rqz - —)
s ¥

r

[_G=Dr+l M ’ 16
—g|[Tr(e+1-——) | X (4.16)
i=1

j=1

where {«; } satisfy the Bethe ansatz equations (4.14). This gives the eigenvalue of the two-mode
boson Hamiltonian (1.1) with the corresponding eigenfunction ¥ (z) (4.8).

5. Explicit examples corresponding to BECs

We will now work out in complete detail the Bethe ansatz equations and energy eigenvalues
of the Hamiltonian (1.1) for the special cases of s, r < 2 and r = s = 3. These models arise
in the description of Josephson tunnelling effects and atom—molecule conversion processes in
the context of BECs.

51.s=1,r=1
The Hamiltonian is
2 2
H:ZwiN,-+ZwijN,-Nj+g(aIa2+a1a;). (5.1)
i ij

This is the so-called two-coupled BEC model and has been solved in [27] via a different
method, i.e. the ABA method. From the general results in the preceding section, in this case,

we have ¢, = ¢, = 1, which means that 2 —q; — ¢, = 2(I — 1) = 0,1,.... That is,
I—1=0, %, 1, .... The differential operator representation of the Hamiltonian (5.1) is
d? d
H = P2~ + Pi(2)— + Py(2), (5.2)
dz dz
where
Py(z) = Ap 2%,
Pi(z) = —gz* + Bz +g, (5.3)
Py(z) = 2(l — l)gz + Dy
with

A = wy +wpn — 2w #0,
Bll = W —w2+w11+(5—4l) U)22+(4l—6) wi2, (54)
Dy =2 — Dwa +41 — 1)*wa.

The Bethe ansatz equations are given by
2(1-1) 2 3 g+Bllap _ gO{i

ZO('—O[ - Ao
i%p i P 1%,

p=12...,20-1), (5.5)
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and the energy eigenvalues are
20-1)
E=4w; (- 1D>+2wi(—1)—g Z ;. (5.6)
i=1
52.s=2,r=1

The Hamiltonian is
2 2
H = ZwiNi+ZwijN,~Nj+g(asza2 +a12a;). (57)
i i

This is the homo-atomic-molecular BEC model and has been solved by the ABA method [27].
Specializing the general results in the preceding section to this case, we have g; = i or %, and

q>» = 1. The differential operator representation of the Hamiltonian (5.7) is thus
d? d

H = Pz(z)d—Z2 + PI(Z)& + Py(2) (5.8)
where
Py(z) = Ay z° +4gz,
Pi(z) = —gz* + Boiz + 8341, (5.9
Py(z) = g2l — g1 — Dz + Dy
with

Az = 4w + wy — 4wy,
By = 2w1 — wy + 2w11(1 +4ql) + w22(3 +26]1 — 41) + wlz(—7 — 8ql + 81),

1 2 (5.10)
Dy =2wi (g1 — 1) + w22l — g1 — 1) + 4wy (q1 — 3)
+wn 2 =1 =g + 4w (q1 — 3) @1 = 1= qu).
The Bethe ansatz equations are
2l—-1-q, 2
2 8 + By, — g
> _ ST Py T 84, p=1,2...2—1—q, 5.11)
z a —a, a,(Aza, +4g)

and the energy eigenvalues are given by
E=2 21 > +4 21 5\’ E (5.12)
=2w - - w el i .
1 1 11 ] 8 : o

53 s=2,r=2

The Hamiltonian is
2 2
H =Y wNi+Y wi;N:N;+g(aj’aj +ajal’). (5.13)
i ij

This gives another model of the atom—molecule BECs. To our knowledge, this model has
not previously been exactly solved. Applying the general results in the preceding section, we

have in this case q; = %, % and ¢ = %, %. The differential operator representation of the
Hamiltonian (5.13) is
d? d
H = P(2)— + Pi(2) — + Po(2), (5.14)
dz dz

10
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where
Py(2) =48z +4An7” +4gz,
Pi(z) = Bnz* + Dz +8gqi, (5.15)
Py(z) = Fnz + Go,

with

A = wi + wy — 2wy,
By =8g(1+q1 —21),
Doy = 2wy — 2wy + 2wy (1 +4q1) + 2w (3 — 81 +4q;) + 8w (—1 — 2¢; +21),
Fo=4g(l—qi—3) (2 —q1-3),
Gy = 2w, (ql - i) + 2w, (2l —q1 — i) +4wp (‘11 - i)z
+8win (g1 — 1) (U — g1 — 1) +4wm (A — g1 — 1)*.

Notethat 2l —q1 —q2) 2l —q1+q2— 1) = 2l — g1 — 1/4) (2l —q1 — 3/4) for g, = 1/4,3/4.
The Bethe ansatz equations read

(5.16)

2l-q1—q2 )

2

i#p
and the energy eigenvalues are

E=4wy <2l —q— l>2 +4wn (612 - l>2 + 8wz (21 —q2— l) (612 - l)
4 4 4 4
2—-q1—q
+2w, (21 — g — 1) +2ws) (q2 - 1) — 4g <q2 + l) <q2+ §> Y w (518)
4 4 4 1) =

54.s=3,r=3

_ 8gq1 + Dpap — By,

= , =1,2,...,2l —q1 — g2, 5.17
o —a, 4a,,(goc[2, +Apa, +g) P T >.17)

The considered examples with s, r < 2 may in principle be treated using the ABA method
based on the Lie algebra su(2) (without any polynomial deformations). We now present an
explicit example for which the ABA method is not applicable. The Hamiltonian is

2 2
H= Z w;N; + Z w;jN;N; + g(alﬁag + a%af.). (5.19)
i ij
This is a nonlinear optical model with third-order harmonic generation. Specializing the
general results in the preceding section to this case, we have g;,q, = é, ;—‘ or %. The
differential operator representation of the Hamiltonian (5.19) is
H—P()d3+P()d2+P()d+P() (5.20)
—3ZdZ3 ZZdZZ lZdZ 0l2), .
where
Pi(z) = 27g(—z* +2%)
Py(z) = Az’ + Bz’ + Dz,
(5.21)

Pi(z) = F32> + Gz + K33
Po(z) = R33z + 833

11
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with
A3z = 9g(18] — 9q1 — 13),
B33 = 9(wi; + wn — 2wpp),
D33 =9g(9q; +5),
F33 =9g (—=361° — 12 +341 + 36lq; — 9q7 — 17q1)
Gaz = 3w — 3wy + w1 (7 + 18¢1) + 2w12(—9 — 18¢; + 181) + war (7 + 1841), (5.22)
K33 =9g (q1+947 +3) .
Ryy=27g (2 —q1—5) (2l —q1 —35) 2L —q1 = §),
S35 = 9wiy (g1 — 3)7 +9wa (21 — g1 — 3)* + 18win (1 — 1) (A —q1 — 1)
+ 3w, (q1 — é)+3w2 (2l —q) — é)

The Bethe ansatz equations read

21_[1215(12 162g(0€;‘, — Oli) Zlﬂjiqz 2(A33Ol[3, + B33a12) + D330t[,) F 2 +G +K
= F3a 330 33,
5, (a; —ap)(a; —ap) P o —ap ,
p=12,...,2l —q — q2, (5.23)

and the energy eigenvalues are

1\? 1\’

E = 9wy, (21 —q — 5) + 9wy <612 - §>
+18 21 ! ! +3 21 !
w —q— = - = w —q— =
12 92 9 92 9 1 q2 9

1 2 5 8 2l-q1—q2
3 — ) -27 = 2 = . (524
* ”’2(‘” 9) g(q”9><"”9)<"”9> ; @i G2

6. Spectral equivalence with QES Schrodinger potentials

The Hamiltonians in section 5 correspond to second-order differential operators and can be
mapped to Schrédinger equations with QES potentials via a suitable similarity transformation
and change of variables [28].
Explicitly, if H is written in the following form:
2

d 1 d
H = P(z)@+<Q(z)+§P’(Z)) £+R(Z), (6.1)

then it can be mapped to a Schrodinger operator,

~ d?
H=—-eV"OHge VO = -3t V(x), 6.2)

where the variables x and z are related by (we assume z = z(x) is invertible on a certain
interval to give x = x(z)) [29],

x:x(z)::l:/& \/iny), 6.3)
and W (x) is given as
Y S Ye))

12
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The potential function is given by

6.5)

1 Pl(s) —
Vix) = {—R(Z)+§Q’(Z)_ 2@)(P(2) Q(z))}

4P(2)

z=z(x)

Then the solutions of the second-order ODE Hr(z) = E(z) with eigenvalue E are mapped
to solutions of the Schrodinger equation

H (x) = EY (x) (6.6)
with the eigenvalue £ = —E and the corresponding Schrodinger wavefunction
T) =e "Iy ). 6.7)

We will not discuss the square integrability of the Schrodinger wavefunction ¥ (x), but
derive the explicit Schrodinger potentials corresponding to the special models in the preceding
section.

6.1. s=1,r=1
For this case, we have

P(z) = Anz%,
Q) =—gz"+(Bii — ANz +g, (6.8)
R(Z) = 2(l — 1)gz + D11.

From (6.3), we obtain
z2(x) = eVAnr, (6.9)
The potential is
(82° + (A — Bi)z — g)(gz2* + BA1 — Bi)z — 8)

V =
) 4A12?
By — Ay

—g(Zl — 1)Z+ T — D11

g2 By (6.10)
= A COSh(Z\/ A“x) +g (2 — A_> sinh(\/ Allx)
11 11
(A1) — Bj)? —2¢°

— @l —1)geY ¥ — Dy +

( )ge 11 1A
6.2 s=2,r=1

In this case, we have

P(z) = Ay Z* +4gz,
0(z) = —gz* + (By — Ax)z +2g(4q — 1), (6.11)
R(z) = g2l —q1 — Dz + Dy,

and g = i or %. From (6.3), we derive
2
20x) = A—g(cosh(\/Azlx) —1). (6.12)
21

13
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The potential is
(822 + (A1 — Ba)z +2g — 8gq1)(g2* + (3BAy — Byy)z + 68 — 8gq1)

Vix) =
2 4(Ay 22 +4gz)
By — A
—8Q2l—qz+ % — Dy
2 VA VA 4g2 VA
= ,f_2 tanh? < 221 x) sinh? ( 22] x) |:Ai sinh? ( 221 x> +2A; — le]
21 21
1 A 421 — 2
b [(As — Ba)3Ay — Bay) +8¢2(1 — 2g)] tanh? (Y221 ) - 2B =408
4A21 2 A21
A 3 —8qg1)Ar + (4g; —2)B By — A
« sinh? <v 21x) N ( q1) Az + (4q1 — 2) By L B 2 p 6.13)

4 cosh? (@x) 2

Here, we have used (1 — 4¢q;)(3 — 4¢;) = 0 for the two allowed g, values ¢ = }1 or %.
Let us consider the special case of A,; = 0. In this case,

z(x) = gx2 (6.14)
as can be seen from the Ay; — O limit of (6.12). The Schrodinger potential (6.13) then
becomes

4 2 2 2
g s & 4+ By +8g°(1—-4l) ,
Vix)==—=x"——B8B + +q1 B2 — Dy 6.15
(x) T g B T X“+q1Bx 21 (6.15)
This is a non-singular sextic potential.

6.3.s=2,r=2
For this case, we have
P(z) = 4gz° + 4A57* +4gz,
0(2) = Bnz® + (D — 4An)z +8gq1 — 2g, (6.16)
R(z) = Fpz+ G,
I

and ¢ = 7 or %. From (6.3), we obtain

1 A
zx) =¢ 3@(g3x;gz,g3)—§, (6.17)
where o (x; g2, g3) is Weierstrass’s elliptic function with invariants g, and g3 given by
4 5 (A3 4 243,
=-gi|—=-3), =—A - —=. 6.18
82= 38 < P2 83 =-An e (6.18)

Hereafter we will denote g (x; g2, g3) simply as g (x). The potential is computed as follows:
(Byy —128)2% + (D — 12A5)z +8gq; — 6¢
16(g2 + Axnz? + g2)

V(x) = (Bnz® + (Dyn — 4An)z + 8291 —2g)

Dy —4Axp
+ (B — )z + — - G2

i (e p(g7x) — 42)
= Ci
i=1 469/(8%)6)2
A (B — Fp) Dy —4A
+ +
3g 2

+(Byy — Fi)g (g7 x)

— G, (6.19)

14
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where

¢y =28(4q1 —3)(Dn —4A») +28(4q) — 1)(Dyp — 12A),

¢y =2g(4q1 — 3)Byn +2g(4q1 — 1)(Bxn — 128) + (D2 — 4A2) (D2 — 12A),
¢3 = Bp(Dy — 12A%) + (B — 12g)(D2 — 4A),

¢4 = By (By — 12g).

(6.20)

Here, we have used 4(gz° + Anz® + g2) = 49 (g3x)° — g2 (g5x) — g3 = ©'(g3x)* and
(1 —441)(3 — 4q1) = 0 for the two allowed ¢g; values g; = i or %.

7. Discussion

Let us now quickly summarize the work. We began by constructing the boson representation
of aclass of su(1, 1) polynomially deformed algebras (2.1), deriving their infinite-dimensional
Fock space realization and lowest weight state parametrization. We then used the Jordan—
Schwinger-like construction to get the polynomial algebra (3.2) which possesses finite-
dimensional irreducible representations. We used the differential realization of (3.2) to rewrite
the Hamiltonian (1.1) as QES differential operators acting on the finite-dimensional monomial
space. The exact eigenfunctions and eigenvalues of the Hamiltonian were then found by
employing the functional Bethe ansatz technique. As examples, we provided some explicit
expressions for the BEC models which correspond to the 7, s < 2 cases of (1.1) and established
the spectral correspondence of these specific models with QES Schrodinger potentials.

In deriving our results, we showed that in general the Hamiltonians defined in (1.1) are
QES differential operators of order 3 or higher. This paper provides an algebraization of
such higher order QES differential operators and unravels the dynamical polynomial algebra
symmetry of (1.1). It also shows that the functional Bethe ansatz method provides a simple
way to find exact eigenvalues and eigenfunctions of such higher order differential operators.

There are a number of extensions that we plan to pursue in this line of investigation.
First, we note that the Jordan—Schwinger-like construction can be extended straightforwardly
to study other nonlinear quantum optical models such as the general multi-mode boson
Hamiltonians of the form

k+k! k+k'
H= 3 wile Y Ny o glal™ - af™allt - ally - alall - allf).
i i,j

(7.1)

Results on this and other models of physical interest will be presented in future publications.
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Appendix

In this appendix, we work out the expansion coefficients in front of % in the expansion of
m d
[T (ZE + Ai)'

15
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First, we see that

ﬁ(z—+A) HA+ ZﬁA z—+ i l—[ ( )2

i=1 i=l1 Ji=Li#j J1<ii#j1#)

T S S <z%)m, (A1)

J1<i<-<jm iF 1 Fjm

since
d \k ) dk k=1 el dk-1 k-1 s dk—2
— | =2 —+ n|z— + nin,—1))z°~ +
(Zdz> gk K dzk1 D mn—1 )z dzk—2
n=1 ni<np
k i
= Z Lz — (A.2)
dz!
i=1
where
Lir=1
i (A.3)
L= Y, ma—D-(uy—Gk—i)+1), i <k
nyp<--<np_i
We can regroup equation (8.1) as
m m m m
n(zd—+A,)=HA,»+ Lo (ST
i=1 i=1 Ji=li#j
m m d m m
A WP ST e § Er=ad R PO U
JI<R<<jm iFj1F jm Ji<p i#Fji#]2
m m 2
2 .
+ + Ly ' Z l_[ ' A; z d—zz+h1gher order terms
JI<R<<jm iF 1 F jm

i

_ m Ai+ m m m m Aj Lk,izid_i- (A4)
, 4 , dz

hi<ee<ly jALFE-F#l
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